Efficiency of subsurface wetlands with power bi in university wastewater treatment

Diego Edison Quiroga Rojas

Diego Armando Castro Munar

María Paula Gómez Leal

DOI: https://doi.org/10.54198/innova16.02

Keywords: Subsurface flow wetlands, water quality efficiency, wastewater, Power BI, data analysis


Abstract

The treatment of wastewater through natural systems such as subsurface flow wetlands represents a sustainable strategy for mitigating the environmental impact generated by human activities. In this context, the present article describes the design and implementation of a Model for Efficiency Evaluation and Optimization of a Subsurface Flow Wetland bit Ornamental Species for the treatment of wastewater on the Girardot Campus of the University of Cundinamarca.


The research integrates data science tools, particularly Power BI, to develop an interactive system for monitoring, analyzing, and visualizing the efficiency in the removal of pollutants such as pH, Chemical Oxygen Demand (COD), Ammoniacal Nitrogen (NH??- /NH?-N), Phosphorus (P), and Total Suspended Solids (TSS), measured before and after treatment. 

 

The methodological process included the periodic capture of physicochemical field data, structured recording in spreadsheets, data cleaning and validation using Power Query, and transformation into a relational model under a star schema approach in Power BI. Key performance indicators (KPIs) were established, along with operational cost metrics and initial investment figures, allowing for a direct link between technical performance and the prototype's economic sustainability.


The resulting dashboard allows researchers, technicians, and students to dynamically consult the temporal evolution of indicators, compare parameters across periods, and make informed decisions for wetland management. Differentiated access levels were implemented to ensure data security and facilitase continuous data collection.


The results show high system efficiency in pollutant removal: 87.7% for COD, 65.7% for Ammoniacal Nitrogen, 58% for Phosphorus, and 91% for TSS—figures that stand out for a natural system operated in an academic setting. This information, clearly and intuitively visualized in the dashboard, has strengthened technical decision-making and encouraged student engagement in using digital tools for environmental management.


This study demonstrates that the integration of business intelligence tools and decentralized ecological solutions is key to strengthening academic and environmental research processes. The proposed model is replicable in other educational institutions interested in linking science, technology, and sustainability to improve their wastewater treatment systems.

Downloads

Download data is not yet available.

References

ALl-Dasoqi, N., Guo, Y., Alkhaddar, R., Atherton, W., & Wang, Y. (2011). Advanced control strategies for wastewater treatment systems: A review. Environmental Technology, 32(9), 965–976. https://doi.org/10.1080/09593330.2010.524870

American Public Health Association. (2017). Standard Methods for the Examination of Water and Wastewater (23rd ed.). APHA/AWWA/WEF.

Dasoqi, N., Guo, W., Alkhaddar, R., Atherton, W., & Wang, Y. (2011). Dynamic modelling and control of wastewater treatment processes: A review. International Journal of Environmental Research and https://doi.org/10.3390/ijerph8114563 Public Health, 8(11), 4563-4585.

Domínguez-Solís, D., Martínez-Rodríguez, M. C., Ramírez-Escamilla, H. G., Campos-Villegas, L. E., & Domínguez-Solís, R. (2025). Constructed wetlands as a decentralized treatment option for domestic wastewater: A systematic review (2015 2024). Water, 17(10), 1451. https://doi.org/10.3390/w17101451

García, C. A., Martínez, J. M., & Gómez, R. F. (2023). Evaluación de plantas ornamentales como agentes fitorremediadores en humedales construidos. Revista Colombiana de Ingeniería Ambiental, 18(1), 45–58.

Ge, L., Kim, J., & Bai, S. (2012). Statistical methods for water quality monitoring. Water Research, 46(1), 1-12. https://doi.org/10.1016/j.watres.2011.10.031

Henriques, C. O., Lopes, M. A., & Antunes, C. H. (2021). Smart and sustainable campuses: A systematic review of the literature. Journal of Cleaner Production, 312, 127461. https://doi.org/10.1016/j.jclepro.2021.127461

Henriques, E., Lopes, A., & Antunes, P. (2021). Plataformas digitales para la eficiencia de proyectos ambientales. Environmental Science & Policy.

Henriques, J., Lopes, N., & Antunes, P. (2021). Digital transformation in water management: A systematic review and a roadmap for future research. Sustainable Water Resources Management, 7(1), 1-15. https://doi.org/10.1007/s40899-021-00479-5

Marín-Muñiz, J. L., Zitácuaro-Contreras, I., Ortega-Pineda, G., López-Roldán, A., Vidal-Álvarez, M., Martínez-Aguilar, K. E., Álvarez-Hernández, L. M., &

Zamora-Castro, S. (2024). Phytoremediation performance with ornamental plants in monocultures and polycultures conditions using constructed wetlands technology. Plants, 13(7), 1051. https://doi.org/10.3390/plants13071051

Marín-Muñiz, J. L., Zitácuaro-Contreras, I., Ortega-Pineda, G., Vidal-Álvarez, M., Martínez-Aguilar, K. E., Álvarez-Hernández, L. M., & Zamora-Castro, S. (2024). Fluoride and chloride removal using constructed wetlands planted with ornamental species: Monoculture vs. polyculture. Hydrological Processes, 11(11), 182. https://doi.org/10.3390/hydrological11011

Mhaskar, P., McAvoy, T. J., & Henson, M. A. (2005). A Nonlinear Control Strategy for Wastewater Treatment Systems. Industrial & Engineering Chemistry Research, 44(9), 3126–3135. https://doi.org/10.1021/ie0490109

Mhaskar, P., McAvoy, T. J., & Henson, M. A. (2005). Nonlinear control strategies for a wastewater treatment plant. Journal of Process Control, 15(3), 285-298. https://doi.org/10.1016/j.jprocont.2004.05.005

Monteagudo-Hernández, G., Hernández-Castelán, D. A., Zamora-Lobato, T., Sandoval-Herazo, M., Hernández-Orduña, M. G., & Sandoval-Herazo, L. C. (2024). Evaluation of pollutant removal efficiency of swine wastewater through hybrid wetlands with tropical ornamental plants. Results in Engineering, 102864. https://doi.org/10.1016/j.rineng.2024.102864

Nani, G., Sandoval-Herazo, M., Martínez-Reséndiz, G., Marín-Peña, O., Zurita, F., & Sandoval-Herazo, L. C. (2024). Influence of bed depth on the development of tropical ornamental plants in subsurface flow treatment wetlands for municipal wastewater treatment: A pilot-scale https://doi.org/10.3390/plants13141958 37 case. Plants, 13(14), 1958.

Nelson, N. (2010). Investigación sobre una implantación sostenible en el barrio Erasmusveld, La Haya. Universidad de Wageningen.

Pasgianos, G. D., Arvanitis, K. G., Mahalakias, G., & Sigrimis, N. (2003). Nonlinear feedback techniques for greenhouse environmental control. Computers and Electronics in Agriculture, 40(1-3), 153-177. https://doi.org/10.1016/S01681699(03)00013-7

Pasgianos, G. D., Arvanitis, K. G., Mahalakias, I. G., & Sigrimis, N. (2003). A Control System for the Optimization of the Wastewater Treatment Process Using On-line Measurements. Computers and Electronics in Agriculture, 40(2), 193–205. https://doi.org/10.1016/S0168-1699(03)00017-6

Rodríguez, C., Hernández, M. E., & Zamora, S. (2024). Environmental assessment of a constructed wetland with ornamental plants in a neighborhood-scale system: Removal rates and plant https://doi.org/10.3390/water6020050 growth. Water, 6(2), 50.

Salas, J. E., Rodríguez, M. D., & Castro, L. F. (2023). CAPDET como herramienta para el diseño y análisis económico de plantas de tratamiento de aguas residuales. Ingeniería y Desarrollo Sostenible, 11(2), 77–91.

Spataro, D., Aguirre Sierra, A., Santos, C., & Urra, A. (2019). Integración de la biorremediación y el tratamiento de aguas residuales. Journal of Environmental Management.

Spataro, F., Aguirre-Sierra, A., Santos, D., & Urra, J. (2019). Nature-based solutions in wastewater treatment: Humedales y eficiencia energética. Environmental Science and Pollution Research, 26(6), 5313–5325. https://doi.org/10.1007/s11356-019-04190-8

Vymazal, J. (2011). Constructed wetlands for wastewater treatment: Five decades of experience. Environmental Science https://doi.org/10.1021/es101403q & Technology, 45(1), 61–69. https://doi.org/10.1021/es101403q

Vymazal, J., Zhao, Y., & Mander, Ü. (2021). Retos recientes en la investigación de humedales construidos para el tratamiento de aguas residuales: Una revisión. Ecological Engineering.

Zhang, Y., Liu, R., Zhou, Q., & Sun, Y. (2023). Design and operational parameters influencing the performance of subsurface flow constructed wetlands: A meta analysis. Water Research, 236, 119986. https://doi.org/10.1016/j.watres.2023.119986

Zurita, F., De Anda, J., & Carreño, R. (2023). Performance of ornamental plants in subsurface constructed wetlands for wastewater treatment and landscape integration. Ecological Engineering, 190, 106923. https://doi.org/10.1016/j.ecoleng.2022.106923

Most read articles by the same author(s)